The long spine board does not reduce lateral motion during transport – a randomized healthy volunteer crossover trial

PII: S0735-6757(15)01160-2
Reference: YAJEM 55518

Received date: 5 October 2015
Revised date: 3 December 2015
Accepted date: 28 December 2015

Please cite this article as: Wampler David, Pineda Chloe, Polk Joan, Kidd Emily, Leboeuf Dale, Flores Marti, Shown Mike, Kharod Chetan, Stewart Ronald, Cooley Craig, The long spine board does not reduce lateral motion during transport – a randomized healthy volunteer crossover trial, American Journal of Emergency Medicine (2015), doi: 10.1016/j.ajem.2015.12.078

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The long spine board does not reduce lateral motion during transport – a randomized healthy volunteer crossover trial

1. David Wampler, PhD, LP
1. Chloe Pineda
1. Joan Polk, BA, LP
1. Emily Kidd, MD
2. Dale Leboeuf, EMT-P
3. Marti Flores, EMT-P
4. Mike Shown, EMT-P
5. Chetan Kharod, MD, MPH
1. Ronald Stewart, MD
2. Craig Cooley, MD, MPH, EMT-P

Affiliations:
1. University of Texas Health Science Center at San Antonio, San Antonio TX
2. United States Army, Fort Sam Houston TX
3. San Antonio Fire Department, San Antonio TX
4. City of Schertz Emergency Medical Services, Schertz TX
5. Military EMS & Disaster Medicine Fellowship, JBSA Ft. San Houston, TX

No external funding sources were available to support this project.
The opinions or assertions contained herein are the private views of the authors, and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

These data were presented as a podium lecture at the National Association of EMS Physicians, Annual Meeting, New Orleans, LA, January 2015.

Corresponding Author and Reprints:
David Wampler, PhD, LP
UT Health Science Center San Antonio
4201 Medical Dr, Suite 120
San Antonio TX 78229
Phone: 210-567-7598
Fax: 210-567-7887
wamplerd@uthscsa.edu

Key words; Spinal motion restriction, long spine board, transport, spinal trauma

Running Head: Spine board fails to reduce spinal motion
Introduction:

Since J. D. Farrington first formally described the long spine board in “Death in a Ditch” 1, emergency medical services (EMS) providers have used this medical device during extrication and transport of trauma victims. The immobilization process is intended to hold the head in line with the torso to prevent secondary injury to the neurotissue protected by the spinal column. Secondary injury holds the potential to result in devastating morbidity with a significant risk of mortality. Because of the gravity of these complications, historically, EMS providers have used this device on any patient with suspected cervical spine injury. This “conservative” treatment results in significant overtriage2.

Use of the long spine board followed a practical and theoretical approach to spinal motion restriction; yet there is a paucity of data documenting the efficacy of this procedure. Proving efficacy is a key question, because the long spine board is not a benign medical device. Complications resulting from the use of the long spine board include: pain3, increased anxiety following a traumatic event, cutaneous pressure ulceration following use4, elevated intracranial pressure5, and increased difficulty in airway management6. Additionally, use of the long spine board may lead to unnecessary diagnostic radiological testing due to difficulty in distinguishing if pain is resulting from the traumatic injury or from being secured7 to the long spine board8.

The complications and perhaps efficacy of the long spine board lies in its design. Essentially, it is a smooth hard flat surface. Patients requiring a protracted transport, or interfacility transport, may be exposed to the long spine board for a considerable time. Increasing the time that a patient is secured to the long spine board thus affects the risk-benefit consideration.

Modern ambulance stretchers have a padded mattress that conforms to a patient’s anatomy. In combination with a cervical collar, the stretcher mattress essentially becomes a flat surface to secure the patient, and with a conforming fit and nonslick surface, patient movement may be reduced without
many of the complications of the long spine board, but this has not been proven. To date there have been no randomized controlled trials of spinal immobilization strategies for the transport of spinal trauma patients\(^9\).

The goal of this study is to evaluate the theoretically reduced movement provided by the long spine board as compared to the stretcher mattress alone in healthy volunteers.

Hypothesis: We hypothesized that the long spine board will not reduce lateral motion as compared to the stretcher mattress alone.

Methods:

Study Design: This was a randomized, unbalanced, 2 period 2 treatment 2 sequence crossover healthy volunteer study of the effect of two treatments (LSB, Mattress) on a measure of motion at each of three locations (chest, head, hip). The immobilization technique was blinded to the ambulance driver, but not to the evaluators in the back of the ambulance, nor to the volunteer.

Regulatory: The University of Texas Health Science Center at San Antonio Institutional Review Board approved this study. Informed consent was obtained from all subjects prior to participation.

Population: Healthy adult volunteers were screened for preexisting medically treated spinal problems, relevant medications (anxiolytics, or prescription pain control medications), pregnancy, or feeling ill the day of the study. Participants randomly selected a packet that contained consent document, and informational pamphlet, and their randomization card. Subjects provided signed consent, and the process was explained. The subjects were blinded to the hypotheses of the study.

Setting: The ambulance used was a Type 1 Frazer Built (Houston TX.) ambulance on a 2013 Dodge chassis, with a standard patient compartment configuration. The patient was secured to a stretcher (Stryker, Kalamazoo, MI), or long spine board (BaXstrap, Laerdal, Wappingers Falls, NY).
Protocol: For both groups participants were in a supine position and properly fitted with a rigid cervical collar. In the stretcher mattress group, once in place on the stretcher, the subject was secured with three straps (torso approximately 4-6 inches below the shoulders, across the hips, and just above the knee) as per local practice (there are no published standards for strap tightness). The subject’s head was secured to the stretcher mattress using foam head blocks and 2” medical tape. The spine board group was secured as above, except that a plastic commercially marketed long spine board was placed on the stretcher prior to the subjects positioning themselves on the surface. Three straps from the long spine board were used in addition to the above described stretcher straps.

Once the subject was secured, three 6 cm 2-dimensional graduated discs were placed at the level of the patient’s forehead, manubrium, and as near to the iliac crest as possible to provide level placement. A laser, affixed to a scaffold (affixed to the stretcher) above the subject, was focused on the center of the graduated disc to allow analog recording of subject movement.

The ambulance was then driven over a prescribed course in a closed parking lot. The course consisted of 15 right turns, 15 left turns, 10 starts, and 10 stops. Maximum speed achieved during transport was 20 miles per hour. The driver was blinded to the immobilization technique.

Measurements:

Data were gathered by four study staff members, three were assigned to each observe one of the discs during the driving course, and the fourth acted as scribe. During each turn, the amount of lateral deviation from the center was verbally reported by the observer and recorded by the scribe. After the completion of each transport time, the volunteer reported level of anxiety and pain on a 10 cm visual analog scale (VAS).

Outcome: The primary outcome was amount of lateral motion afforded by each of the immobilization events. The secondary outcome was the difference in pain and anxiety experienced by each of the study volunteers.
Statistical Methods: This proof of concept study sample size was based on a convenience sample based on, cost, ambulance availability and time constraints (8 hours). We approached this study in a state of equipoise, not knowing what we would find, and conducted an exploratory data analysis, summarized here, that is intended to generate hypotheses to be, perhaps, pursued in a new and properly designed study.

The statistical significance of variation in the mean motion with regard to treatment was assessed with paired t-tests and with a linear model of motion in terms of sequence, subject nested in sequence, period, and treatment. Carryover was assumed non-existent. The linear model analysis was carried out without and with adjustment for BMI and all analyses were carried out by location. All statistical testing was two sided with a significance level of 5%. SAS version 9.3 for Windows (SAS Institute, Cary, NC) was used throughout. Descriptive statistics and graphical representations were developed using Microsoft Excel (Redmond WA).

Results: Nine subjects participated, 67% were female, mean age was 46 (median 41 +/- 10) years old, and mean BMI 31 (median 29 +/- 6) Table 1. Movement data from subject number one was excluded due to a complication of data collection during the experiment. The data collection problem was corrected prior to the second transport iteration, however the PI chose to exclude the patient in an effort to eliminate the possibility of bias due to longer exposure to the long spine board. Of the 8 subjects, 5 were randomized to LSB followed by Mattress and 3 to Mattress followed by LSB. All patients reported feeling well and pain free at the time of completing the prescreening and informed consent.

Each driving iteration resulted in a mean of 29 (+/-2) lateral forces during the course; the course typically took less than 8 minutes each.

The long spine board allowed 0.8 cm (p=0.0001) greater mean lateral motion for all measurements in aggregate than did the stretcher mattress alone. See Figure 1. When comparing the measurements taken at the three individual points of measurement there was 0.5 (+/- 0.4), 1.7 (+/- 1.2), and 0.8 (+/1.3) cm greater lateral motion for the head, torso, and hip, respectively. See Table 2.
Plotting the amount of movement from each patient as a function of BMI reveals a direct correlation of increased movement with increased BMI. Figure 2. This correlation persists with or without the long spine board.

After the completion of each iteration, the subjects responded to a four-question VAS scale questionnaire regarding pain and anxiety. For the four questions, there was no statistically significant difference in pain and anxiety on exit after either long spine board or stretcher mattress alone. See tables 3.

Discussion:

This was a small proof of concept study that demonstrated an increase in lateral movement of healthy subjects during transport on a long spine board in comparison to the stretcher alone. There is limited empirical evidence that it improves patient outcomes and there is some evidence that there are negative consequences. Despite this, theoretically there is a goal to limit significant spinal motion in settings of potential spine injury. This is the first study to examine differences in lateral movement in 3 anatomic areas in healthy volunteers and may be the first step in understanding other acceptable methods for spinal immobilization.

The arguments for the use of long spine boards in patients with potential or known spine injuries have historically revolved around the idea of “immobilization” of the spine, similar to the concept to splinting of other bony injuries. In the case of long bone suspected fractures, the intent for immobilizing the affected limb is to reduce any secondary soft tissue and neurovascular injury, and to reduce pain. Pain reduction reduces the potential negative physiological effects of pain on the body. This treatment approach, understandably, leads to an expected over triage with many patients receiving splints absent significant injury. However, the properly applied splint functions as intended and restricts bony movement and stabilizes the limb with minimal, if any, negative effects to a non-fractured limb.
This concept of acceptable “over triage” has also been applied to patients with potential spine fractures and/or cord injuries. Treatment is sometimes initiated based on mechanism of injury alone despite all clinical evidence to dispute spine fracture or cord injury. The historical argument is to utilize long spine boards in patients with vertebral bone or vertebral joint injuries to prevent furthering any spinal cord damage that could result in a worse neurological outcome. Based on this principle, spinal motion restriction during all elements of prehospital patient care should be optimized, and given the potential devastation associated with spinal cord damage; over triage in the use of the long spine board has historically been the accepted practice. The assumption was that a rigid “spine splint” would reduce the risk of movement in the prehospital environment.

There is limited scientific evidence to support the spine splint stabilization theory. There are, however, studies using imaging and cadaver models that suggest excessive movement could be harmful and that there is minimal acceptable cervical spinal cord movement within the spinal canal before cord injury could theoretically occur. Interestingly with these assumptions, even the best immobilization may not be effective. However the current literature on the subject does not specifically establish how much movement is clinically relevant and there do not seem to be scores of patients that started out neurologically intact and then developed significant cord injuries regardless of immobilization effectiveness calling into question the clinical relevance of spine splint. Despite the limited information available at this time, the low frequency, but high criticality of spinal cord injuries makes it still seem prudent to limit spinal movement during all stages of prehospital patient treatment.

Secondary spinal cord injury from unacceptable movement of the spinal cord in an improperly immobilized patient is of theoretical concern. If, like extremity splints, the negative effects of the long spine board were minimal, this historic approach to their overuse would not be of clinical concern or scientific interest.
Backboard use for spinal immobilization has been known for some time to produce multiple negative patient effects, including pain, respiratory compromise, increased anxiety, and injuries in the form of skin breakdown. Long spine boards have also consistently been shown to increase pain and discomfort to the patient. This pain may increase the frequency of otherwise unnecessary radiological testing by confounding the clinical team at the receiving facility. While there were no statistical differences in the current study, the subjects were only exposed to the long spine board typically for only ten minutes, this is probably an artificially short time period as compared to a more typical EMS transport and transition of care to the emergency department.

Our study shows that during the transport phase of patient care, when compared to placement on the stretcher mattress alone, the long spine board allows for increased patient movement, and more importantly, more torso movement relative to the head, thereby focusing the torque to the cervical area. Torque in the cervical area is arguably the most concerning movement in a potentially spine injured patient. From a simple physics standpoint, it makes sense that a hard, flat, smooth surface would not prevent lateral movement as compared to a softer, conforming surface that tends to be more cradling in nature.

Based on our observations, transferring the patient onto stretcher mattress rather than leaving the patient on a long spine board during transport potentially reduces lateral spinal motion, and be a safer transport intervention. Even at the low speeds over a short distance in this study, the difference in movement was significant between the long spine board and the EMS stretcher. If extrapolated to the higher speeds of actual EMS transport, the effect would remain, and very likely, be even more pronounced.

Finally, one must remember that the intended use of the long spine boards as a medical device is to minimize spinal motion. All other potential pluses for long spine board use, such as moving patients from vehicles or ditches, are conveniences for the provider. The absence of true motion...
restriction by the spine board suggests that the risk of harm to the patient outweighs any intended benefit. No other medical device would be allowed to exist simply for the convenience of the medical provider if it did not achieve its intended medical use, particularly if it also potentially caused harm to the patient without benefit. This study suggests that this is exactly the case with long spine board. Ultimately, the long spine board may retain some usefulness in the prehospital environment and this study is neither sufficiently powered nor comprehensive enough to be a definitive answer to the overall question surrounding its use. However, even in this small scout study, the long spine board shows no improvement, and in fact, worse restriction of spinal movement than a stretcher mattress alone. Its continued routine use as an approved medical device should come under significant scrutiny to assure its effectiveness as intended throughout all aspects of prehospital care.

Limitations: The results here are biased by the use of healthy volunteers. Conscious patients with real spinal injuries will likely self-splint to reduce motion. Without the pain of movement in health volunteers, self-splinting would not have occurred. However, spinal injured patients with decreased mental status or neurologic compromise may also not self-splint. We did not explore this potential confounder. Any potential movement of the spine board on the stretcher as opposed to the movement of the patient on the spine board would not have been appreciated by the evaluator. The spine board was not necessarily fixed to the stretcher as was the scaffold, rather it was resting on the stretcher matress. The weight of the patient on the rigid board did impress the LSB into the soft matress thereby significantly limiting movement. However, if the spine board itself was moving, then theoretically, the discs would not be measuring lateral movement of the body on the board but actually lateral movement of the board itself.

We employed a low speed transport in a level, well-maintained parking lot. This driving area reduced the multi-vectoral forces that would normally be encountered during transport on typical urban streets.
Data gathering was un-blinded and based on investigators reporting lateral movement on the measuring disc. This individual measurement approach potentially allowed variation in precision of the measurements. However, each observer reported for the same subject during both modalities, so any inaccuracy should have occurred for both arms thereby negating any potential bias. Our study only evaluates gross lateral movement of external body and cannot evaluate the direct clinical correlation to possible spine movement. In addition, we only observed movement along a single plane. With planned further study, movement in additional planes (rotational or vertical) may demonstrate additional findings regarding the effectiveness of spine boards. However, the clinical relevance of multi-axial measurement is still uncertain and difficult to establish.

Another limitation of this study is that we specifically evaluated the effectiveness of two different spinal restriction modalities during transport only. This study did not address other aspects of patient extrication or movement and the long spine board may still have important use in the prehospital environment, however long spine board use during extrication may also be suboptimal 16.

The results of our study are broadly generalizable to EMS systems utilizing stretchers with contoured mattress pads and using traditional spine boards during transport of patients suffering potential cervical spine trauma. It does not address the use of spine boards in any setting except ground ambulance transport. In addition, the results cannot be extrapolated to other immobilization devices, such as vacuum spinal restriction devices.

Conclusion: During transport, traditional spine board immobilization allows for more lateral movement than stretcher mattress alone. While reducing spinal motion in potentially spine-injured patients is still a major tenet of emergency transport, the long spine board is likely not the right medical device for this purpose.

Acknowledgements:
This work was also supported in part by the San Antonio Fire Department and the SAFD Office of the Medical Director, along with University of Texas Health Science Center at San Antonio Department of Emergency Health Sciences internal funding. The Southwest Texas Regional Advisory Council’s Research Committee also contributed intellectual effort in the design of this protocol. Authors would also like to thank Schertz EMS for technical assistance, as well as the men and women of the San Antonio Fire Department for help in constructing the field perspective of this paper.

References:

6. White, C. C. t.; Domeier, R. M.; Millin, M. G.; Standards; Clinical Practice Committee, N. A. o. E. M. S. P., EMS spinal precautions and the use of the long backboard - resource document to the position

Figure Legends

Table 1. Demographics of enrolled healthy volunteer subjects

Table 2. Lateral movement as measured in 3 anatomic areas in healthy volunteers during transport on either the LSB or ambulance stretcher. All measurements given in centimeters, with standard deviation, total range and 95% confidence interval of movement. n= total number of measurements, OTS = off the 6 cm scale, for calculation all OTS score received a 6 cm of movement.

Table 3. Subjects reported levels of pain, anxiousness, breathing difficulty and comfort after each transport. A 10 cm visual analog scale was used, and the means, medians, ranges, standard deviations are reported in centimeters.

Figure 1. Mean Freedom of Movement. Subject movement during transport was measured on a 6 cm graduated disc. Each movement was recorded in centimeters, and the mean movement is represented in the bars above. There was a 1 cm increase in torso movement while positioned on the long spine board (time interval depicted by the grey box). And there was a 1.3 cm greater amount of movement of the torso than the head (time interval depicted by the black box).

Figure 2. The mean lateral movement of each health subject as a function of BMI.
Table 1

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std Dev</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>46</td>
<td>41</td>
<td>10</td>
<td>39-70</td>
</tr>
<tr>
<td>Height (inches)</td>
<td>68</td>
<td>68</td>
<td>4</td>
<td>63-76</td>
</tr>
<tr>
<td>Weight (pounds)</td>
<td>207</td>
<td>215</td>
<td>43</td>
<td>134-260</td>
</tr>
<tr>
<td>BMI</td>
<td>31</td>
<td>29</td>
<td>6</td>
<td>24-40</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Stretcher</th>
<th></th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Head</td>
<td>Chest</td>
<td>Hip</td>
</tr>
<tr>
<td>Mean</td>
<td>0.5</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.4</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Range</td>
<td>0 - 2</td>
<td>0 - 5</td>
<td>0 - OTS</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.38 - 0.49</td>
<td>1.08 - 1.31</td>
<td>1.05 - 1.29</td>
</tr>
<tr>
<td>n</td>
<td>205</td>
<td>205</td>
<td>205</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std Dev</th>
<th>Range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stretcher</td>
<td>LSB</td>
<td>Stretcher</td>
<td>LSB</td>
<td>Stretcher</td>
</tr>
<tr>
<td>Pain</td>
<td>0.21</td>
<td>0.82</td>
<td>0.20</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiousness</td>
<td>0.21</td>
<td>0.53</td>
<td>0.00</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breathing</td>
<td>0.38</td>
<td>0.32</td>
<td>0.00</td>
<td>0.00</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfortable</td>
<td>0.70</td>
<td>2.23</td>
<td>0.30</td>
<td>2.00</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Graphical representation of differences on movement.

Mean Freedom of Movement

- **Head**
- **Torso**
- **Hip**

Mean Lateral Movement Allowed (cm)

- **Difference in torso movement LSB vs SM = 1 cm**
- **Torso movement beyond the movement of the head ~ 1.3 cm**

Mean Lateral Movement Allowed (cm)
Figure 2. Lateral motion as a function of BMI

Head

\[y = 0.0374x - 0.3793 \]

\[R^2 = 0.4062 \]

Chest

\[y = 0.0908x - 1.0893 \]

\[R^2 = 0.4923 \]

Hip

\[y = 0.0906x - 1.2279 \]

\[R^2 = 0.5477 \]